第8章 开普勒、吉伯和伽利略:物理学中的一场革命?(2/2)
《科学中的革命-美-科恩》作者:科学中的革命-美-科恩 2017-04-13 11:59
可能会潜在地影响所有科学的方法和结果,从这一点来讲,它有着更为重要的意义。与开普勒不同,伽利略的著作广为流传(并被译成了别的语言),而且,他的著作对他那个时代的科学家和科学思想产生了巨大的影响。这种影响甚至随着对他进行的著名的审讯和定罪而扩大了。
似利略做出了大量发现,不过,他的革命活动主要在以下这四个独特的领域著称于世,即望远镜天文学,运动原理和运动规律,数学与经验的关系的模式,以及实验科学或实验法科学。(有人可能会十分恰当地举出一些例子来说明,伽利略在另一个领域也很著名,这第五个领域就是科学哲学,然而,伽利略在这方面颇具革命特征的思想,都包含在实验科学和数学与经验的关系方面了。〕
许多证据都可以证明伽利略在运动学领域进行了富有革命性的工作。而且,17世纪中叶那些物理学著作的编、撰者们——克里斯蒂安·惠更斯,约翰·沃利斯,罗伯特·胡克,伊萨克·牛顿——都承认并使用了伽利略的那些定律和原理。至少在两个世纪中,许多科学史家和科学哲学家都在为伽利略革命而欢呼。此外,长期以来,物理学家和其他领域的科学家们一直认为伽利略是位革命英雄,甚至夸大他的作用,以致于把他说成是现代科学和科学方法或实验方法的创始人,是牛顿前两个运动定律的发现者。简而言之,伽利略似乎轻而易举地通过了鉴别是否已经引起的一场科学革命的所有检验。
伽利略首次公开展示他的富有革命性的科学是在161O年,当时,他发表了用望远镜探索天空所取得的最初一部分成果。在本书第1章中我曾谈到过伽利略对天空的看法的转变过程,即从个人的观察经验到得出理智的结论的转变过程。他用类推原理和物理光学说明,月球表面也像地球一样,峭壁林立,起伏不平。他发现,地球使月球生辉发亮。他看到木星系统有四个卫星,金星有位相变化。他的望远镜不仅展示了有关太阳、地球以及行星这些以前已为人知的天体的一些新的消息,而且在可视的范围内向人们展现出了用肉眼从未看到过的大量的恒星(和卫星)。
伽利略的发现,以及其他人的发现,首次向所有人说明了天空是什么样。金星的位相,如果与行星的表现尺寸联系起来,就能证明金星轨道所环绕的是太阳而不是地球,并由此证明托勒密是错的。所有这些发现都是与哥白尼的这一命题相一致的:地球只不过是另一个行星;也就是说,所有的发现表明,地球更像是个行星而不像是与行星不同的东西。伽利略因此立即证明,他业已说明了哥白尼体系的正确性(尽管事实是,他的发现与第谷·布拉赫的体系也是十分相容的,而在第谷·布拉赫的体系中,地球仍被看作是位于中心,其他行星环绕着太阳,太阳则围绕着地球循环运动)。
这些发现使观测天文学发生了革命性转变,并且从根本上使哥白尼天文学讨论的层次发生了变化。在1610年以前,哥白尼体系可能看起来是一种思想实验,一种假设的计算系统,对那些否认地球看上去像是一颗行星(即我们认为是闪耀着极为灿烂的光芒的星球)的人来讲,它是某种在哲学上荒诞不经的东西。在1610年革命发生并产生了成果后,科学家能够(并且确实)证明,地球与其他行星实在相似,而且理应有同样的运动。哥白尼非常正确地指出,地球只不过是“另一颗行星”。要想否认这种新的在经验上得到了修正的哥白尼学说,只有拒绝用望远镜去观察,或者断言,通过望远镜所看到的肯定是一种光学假象或是望远镜的透镜所产生的一种畸变,而不是行星的真面目。一些非常明智的哲学家都采取了这一态度,这一事实表明,在当时,以经验证据为基础来认识大自然是一种多么激进多么富有创新性之举。
伽利略在其中引起革命性变化的第二个领域就是运动学。这一课题一直被认为是自然哲学的中心;所以,在其《两种新科学》(1638)第三天对话的开场白中,伽利略夸耀说,他正在引进“一门有关一个极为古老课题的崭新的学科”(伽利略1674,147)。也许,许多有关运动的新定律和新原理都应归功于伽利略。他发现了摆的等时性——当一个自由摆动的摆沿弧线运动所经过的弧的长度越来越短时,它的运动速度也会减慢,但它完成每次摆动的全程所需要的时间却(总是)保持不变。他通过激动人心的实验证明,在空气中,重量不同的物体下降的速度几乎是相同的,而并不(像以前亚里士多德以及今天未受过物理学教育的大部分人仍然认为的那样提与物体的重量成比例的。他发现,自由降落是匀加速运动的一种情况,在这种情况下,运动速度随着时间的持续而增加,运动的距离与时间的平方成正比。他提出了矢量速度的独立性原理,并采用了矢量速度组合(合成)法,他运用这一原理来解决抛射体的轨道问题:他发现,这种运动的路线是一条抛物线。因此,他指出,当大炮的炮简与地平线成45。倾角时,大炮的射程最远。
在对抛射体的抛物路线所作的分析中,伽利略勾画出了惯性运动原理形成初期的情况。一系列相继得到了改造的概念导致了牛顿1687年的惯性定律,显然,其中第一个概念就是伽利略提出来的。不过必须要记住的是,伽利略主要是从运动学角度来分析运动的。也就是说,尽管伽利略的讨论有一些或包含着一些力的作用问题,但他既没有尝试去找出引起(或导致)运动的力,也不曾试图去发现作用力与运动之间严格的数学关系。
伽利略的第三个贡献是在数学领域。现代科学,尤其是物理学,其特征就是用数学来表述其最高原理和定律。到了17世纪,科学的这一特征开始显示出了重要意义,而且,这种特征的重要性在牛顿的《自然哲学的数学原理》(即《原理》)出版时到达了第一个高峰。从伽利略在《两种新科学》第三天对“自然加速运动”的讨论里,我们可以看到伽利略方法论具有革命性的一面。伽利略在提出这一话题时解释说,假设任何一种运动并从数学上说明其本质,这种做法(就像以前经常做的那样)是完全合理的。不过,他愿遵循另一种方针,亦即“找出并阐明与大自然所进行的那种运动[加速运动烬可能完全一致的定义。”在考虑“在某一高度静止不同的”石头是怎样下落之后,他得出结论说,“新增值的速度”的连续获得,是由“最简单和最明显的规律导致的”(伽利略1974,153-154),这就是说,这种增值总是以同样的比率持续进行的。因此,(a)在下落的每一连续相等的特定距离内,或(b)在所消逝的每一连续相等的时间间隔内,速度的增加肯定总是相等的。伽利略出于逻辑上的理由对等距规则不予考虑,转而着手阐述等时规则的各种数学推论,其中有这样一个结论:在匀加速运动中,“物体在任何时间内所通过的距离都与各自所用的时间成倍比”(也就是说,它们各自都与那些时间的平方成正比)。伽利略随后对“这是否就是大自然在她的下落的物体上施加的加速作用”提出了疑问。
答案是通过一项实验找到的,这一实验程序“在把数学证明应用于物理学推论的那些学科中是非常有用和非常必要的”(伽利略1974,169)。实验也许看起来是相当容易的,但实验设计和对实验结果的解释,需要对现代科学的基本原理有高水平的理解(参见下文)。要正确地评价伽利略程序具有何等的革命性和创新性,我们应当把它与中世纪的数学家一哲学家们的活动加以比较和对照。在12、13和14世纪,数学家一哲学家们一直在积极探讨运动问题(参见第5章},他们的数学发展处于一种抽象的水平。在这里,运动问题属于一般的范畴,这一范畴包含了从“潜在性”到“实在件”(亚里土多德的定义)的任何一种可以量化的变化,这里的“潜在性”和“实在性”包罗万象,从爱、仁慈到(从一处向另一处的)地点的变化。所以,伽利略要根据(并举例说明)自然界中实际出现的运动来阐述有关运动的数学定律,这的确是一个大胆的举动。以前同样也没有人发展到用实验检验来证明物理学定律——而这里正是伽利略为科学做出重要贡献的第四个领域。
伽利略在数学上阐述了诸多运动定律,其中包括匀速运动定律,匀加速运动定律,以及抛物运动定律等等。这例证了17世纪科学的一个(可以毫不过分地说)普遍特征,亦即这一思想:基本的自然规律必须是用数学阐明的。在17世纪中,对数学的这种强调有着多种多样的形式。例如,从最初级的水平上讲,数学也许仅仅意味着数量的确定,计数作用。也许存在着这样的柏拉图教条:宇宙中的真理将借助数学而不是借助观察和实验来发现,首先应该考虑的是数学方面的特性,而不是与经验世界的一致。我们已经看到,在相当一段人类的历史中,人们感到圆是一种完美的体现,天体运动最应表现出这种完美的特点。咖利略驳斥了所有此类抽象的几何属性观,他认为,也许有些不同的几何特征最能说明某些特殊情况。当然,从数学上阐述科学是对科学的最高级的表述这种观点,在17世纪并不是十分新鲜的东西;托勒密曾把他的伟大的天文学杰作取名为《数学的综合》或《综合》。对伽利略而言,这些传统的数学观与新科学的数学观之间的差异意味着,在经验世界与知识的数学形式之间将会有一种和谐,这种和谐可以通过实验和批评性观察来获得。
不过,在伽利略撰写的数学著作中,他所阐述的并不是通常我们所想到的那种数学,亦即代数方程的应用,混合比例(例如“距离与时间的平方成比例”),流数,或微积分等。他所论述的是数列。以下规则即为其中一例:若取自由落体在第一段时间间隔末的速度值作为速度单位,则它在相继且相等的时间间隔末的速度为从一开始的自然数(或整数),或者说它在相继且相等的时间间隔内所走过的路程彼此的比为奇数,或曰,在这一系列时间间隔末所走过的总距离按平方律变化。在《试金者》中(伽利略1957,237-238),伽利略对自然界的数学问题作了精彩的陈述,他指出,应该把几何学看作像有关数的法则一样重要。“哲学[自然科学,或科学]写在宇宙——这部一直向我们敞开的伟大著作中”;但是,“我们如果不先学会书里所用的语言、掌握书里的符号,就不能了解它。这部书是用数学语言写出的,它的字母是三角形、圆和别的几何图形。不借助它们,那就一个字也读不懂。”所以,谈到伽利略与数学的关系时,重要的并不在于数学本身的水平有什么创新之处,而在于他清晰而引人注目地表述了用数学来阐述自然现象的必要性,以及以实验和观察为基础确立自然界的数学规律的必要性。
谈到伽利略与科学实验方法论的关系,有必要谨慎一些。近年来有一项值得注意的事业(主要集中在小约翰·赫尔曼·兰德尔的著作中),这就是对伽利略科学方法论的先驱者进行探讨。我发现,很多的历史学家都犯了一个根本性的错误,即没有分清有关方法的那些抽象的陈述或格言与实际的科学工作之间的区别。在许多16世纪的作者的著作中,确实有听起来像是讨论实验或从事科学研究的方式的论述,然而,了解到这些作者中没有一个人曾完成过任何一项科学研究工作这一事实,我们就不太相信它们真是有关实验问题的阐述了。附带说一句,在拉丁语和罗曼语中,用来表达实验、经验的词都是相同的,而且大体上每个人都知道。
据说,伽利略曾在一个高塔上抛下重量不等的物体这一著名的实验,解决了一个独特的问题。所谓伽利略在众目睽睽的情况下在比萨斜塔上进行演示,公开与亚里士多德学说对抗之说,不过是些过于耸人听闻的虚构之词,无疑,它们都是杜撰出来的。不过,伽利略确实在自己的笔记本中记录过他“从一个高塔上”把重物抛下来的情况。伽利略这样做是为了了解:传统的“常识”观是否正确,重物在空气中自由下落时的速度是否与它们各自的重量成比例。伽利略用另一种实验来检验他的假说——自由下落的物体的运动是匀加速的。我们要问的是:自由落体的速度的增值是否与消逝的时间成正比呢?我们会看见,在进行一项人们会在其中提出这类有关大自然的问题的实验中,将会产生出许多问题。要直接检验这种比率是不可能的。所以,伽利略检验了另一个定律,一个他希望检验的逻辑推论,这就是:距离与时间的平方成正比。即使这一检验也超出了伽利略的能力所为,因为自由下落的物体运动得太快,以致于他难以进行测量。因此,正像他所说的那样,他“冲淡重力”,在一个斜面上进行了实验。他在实验中发现,时间平方律确实经受住了实验的检验。当然,伽利略是位伟大的实验家,他充分认识到,进行大量不同角度的斜面实验是很重要的;在所有这些斜面实验中,定律都经受住了检验。我不想详细地讨论伽利略是怎样根据斜面角度的增大用数学来表述重力沿斜面的分量的。只要说明以下这一点就足已了:伽利略在所选择的例子中表明,随着思想的发展和“科学”的日益复杂,必须要设计出一个实验用来检验那些哪怕看起来最简单的定律如:距离与时间的平方成正比。
伽利略不仅认识到对运动所作的抽象的数学推理一般均可适用于自然界中所观察到的真实的运动,并且通晓用实验来检验数学规则的技术,他也熟知怎样说明思想状态与实验状态的差距。例如,他通过实验发现,从一个高塔上下落的重的物体比轻的物体略微早一点接触地面;他把这个微小的差额归因于空气阻力以及重的物体和轻的物体克服这种阻碍作用的相对能力。他提出结论说,在理想状态下,在真空中或自由空间内,它们下落的情况是完全相同的。
在进行实验设计以便对假说加以检验的同时,伽利略还对自然现象作了实验探讨。斯蒂尔曼·德雷克对伽利略的手稿进行了仔细研究后,重现了这类探讨实验。这类实验很有可能就是伽利略解决惯性问题的关键,而且,它们几乎已经使伽利略以一种与他在《两种新科学》中所描述的方法略有不同的方式得出了匀加速运动定律。
伽利略的确不是第一位进行实验的科学家,但他是头等重要的科学家之一,他在进行数学分析的同时,使实验成了他的科学的一个组成部分。事实上,他把实验技术与数学分析相结合(例如在斜面实验中所做的那样),使他名符其实地成了科学的探究方法的奠基人。
伽利略大量的实验和天文学观察包含了他的科学的哲学中两个革命的特征(与斯蒂尔曼·德雷克的通信为我澄清了这个问题)。一个是,伽利略所表明的信念:“感性经验和必要的证明”“不仅优于哲学信条而且优于神学信条。”很有可能,直到19世纪,“大多数科学家才采取了与他相同的立场。”第二个特征与伽利略的探讨工作有关(德雷克称,伽利略的探讨是“他的科学中主要的富有创新性的部分,而且,伽利略在许多地方都提到过这种探讨”),这就是“在裁决任何科学问题时权威不足为据。”在《水中的物体》中,伽利略更进一步评论说:“阿基米德的权威并不比亚里士多德的权威更加重要;阿基米德之所以正确,是因为他的结论与实验相符。”德雷克怀疑“除了他那些自身就可以说明问题的发现外,伽利略对其科学中任何新颖的问题都要考虑。”我们可以同意德雷克的看法,即伽利略仅仅“把他自己看作是把托勒密很成功地运用于天文学上的方法用在了物理学上;也就是,在不考虑古老的[亚里士多德的]意义上的因果条件或[借助于〕形而上学原则的情况下,用几何学方法和算术方法把辛勤测量的结果运用在可检验的预见之上。”
伽利略的成果广为人知,人们也都因此承认,他使运动学得到了改革和更新。沃尔特·查尔顿1654年出版了《自然科学》一书,该书主要涉及的是新老原子论的自然哲学,而且,它以介绍伽利略、伽桑狄以及笛卡尔等人在运动学方面的成就而闻名。查尔顿在这部书中毫不怀疑地认为,伽利略的研究是全新的研究。他认为“伟大的伽利略”“奠定了运动本质的…基础”,正是这一成就导致了“亚里士多德的有关学说”的“覆灭”(p.435)。他认识到了,“没有一位古人的探讨”深入到“物体向下运动”时速度增加的“比率或速率”,而伽利略却发现了这个问题,此外,正是这位“伟大的伽利略”完成了“对大自然最鲜为人知的奥秘的探讨,这种探讨是无与伦比的”(35,455)。
在17世纪的科学文献中,伽利略似乎不仅是运动定律的发现者和亚里土多德的驳斥者,而且还是最早用望远镜观察天空的探索者。约瑟夫·格兰维尔在其论文《现代实用知识的改进》中(1676,18-19),用了整整一页的篇幅来论述伽利略用望远镜所做出的发现:
在[第谷·布拉赫]以后随继而来的时代,亦即我们这个时代,他的发现和他的前辈人著名的哥白尼的那些发现得到了非常好的应用;而且,天文学在人们心目中获得了有史以来最为崇高、最为完美的地位。如果愿意的话,可以用一部书的篇幅来描写所有独特的发现,但我不想这样做,我只想简要地谈一下。我打算先谈谈伽利略,这位享有盛名的望远镜的创造者,尽管首先发明这种绝妙的望远镜的荣誉应归于阿姆斯特丹的雅各布斯·梅齐乌斯,但改进了它的却是著名的伽利略,而且是他首先把望远镜应用于对星空的观测;凭借得天独厚的优势,他发现了银河的本质,发现了猎户星座上端由21颗新星组成的星云,和由36颗新星在巨蟹座**同构成的另一处星云,他还发现了土星的光环,木星的卫星,他把它们的运动汇编成了一个星历表。根据这些新月状的东西就可以确定木星到地球的距离,以及到子午圈的距离,这将是一件很有意义的事,因为这总可以通过一年一次或两次的月食来测量;其实,根据这些新的行星的星蚀进行计算的机会是常有的,这一年反复出现了480次。此外,(望远镜还促使)伽利略发现了奇怪的土星位相,它有时是椭圆形的,有时是圆形的;金星也像月球一样有时增大,有时缩小;他还发现了太阳的黑点,以及它围绕自己的中轴的自转;还发现了由其不同位置的黑点集合而成的月球的天平动;以及其他一些令人惊讶的、具有实用价值的奇妙的现象,它们是古人从未见到过的。
也许可以把这段会令读者窒息的说明与格兰维尔对开普勒一带而过的叙述加以对照:
下一个要谈的是开普勒,他首先提出了椭圆假说,并对火星的运动进行了极为准确的和富有启发性的观察;他还用最为清晰和明确的方式撰写出了哥白尼天文学的概要,书中含有其他一些人的发现,也有他本人的几项著名的发现;书中没有提到星历表,也没有提到有关营星的著作。格兰维尔甚至没有提及开普勒的面积定律或和谐定律,而已显然对开普勒以行星运动的物理学原因为基础建立新的天文学纲领并不重视。
牛顿在《原理》中指出,伽利略之所以名扬天下,不仅是因为三项运动定律中的头两项定律,而且还是因为这头两项定律的推论,它们涉及到了向量速度的组合问题及其解决办法。’所以,牛顿为伽利略欢呼,说伽利略是他自己的理论力学最初的奠基者,同时却贬低了开普勒的作用:说他只是行星运动的第三定律或和谐定律的发现者,彗星的观察者。他甚至怀疑开普勒是否发现了椭圆轨道定律和面积定律。(有关牛顿和开普勒的讨论,参见科恩1975)17世纪的天文学无疑就是伽利略天文学。伽利略倡导使用望远镜,从而使天文学的观察基础发生了革命,并使他以现代科学奠基者之一的身份赢得了主导地位。他对自由下落问题的研究。他对抛射体运动和沿斜面向下的运动的分析,业已成为与实验相结合的数学分析的典范。他所发现的有关匀速运动和匀加速运动的定律依然是这门科学的基础。实验方法,尤其是那些每次可能只改变一个参量的实验方法,仍旧以他的名字命名。伽利略比开普勒(他没有伽利略那种用实验获取知识的惊人才能)和吉伯(他缺少伽利略的那种数学知识)更胜一筹,他的研究体现了科学的新的特点,这些特点则是科学革命的表征。伽利略是现代科学最伟大的奠基者之一,他是科学革命中的一位英雄人物。
然而,伽利略革命并没有完成。在其运动问题的研究中,伽利略把他的注意力主要集中在我们今天会称之为运动学的那部分。他已经开始思考地球运动中力的作用,但他所取得的最重要的进展并不是在这方面。与开普勒不同,伽利略本人完全没有注意到,宇宙中的作用力、地球的作用力或太阳的作用力,有可能是行星运动现象的原因。他无视开普勒行星运动定律的发现,而且嘲弄开普勒的这一见解:月球远距离的作用力有可能是导致海洋中潮汐运动的原因。在科学中,伽利略革命的完成还需要有另一个阶段的革命,那就是对惯性、对加速度产生的地球的和天体的作用力的认识,伽利略本人在这些问题方面的思考尚处于萌芽阶段。牛顿革命使伽利略已经完成的工作中的潜力得以实现,而且取得了远远不仅如此的成就。当然,在此之前还需要有半个世纪的发展时期。说伽利略科学革命的完成还需要有一场更为深入的革命,而伽利略在运动原理和运动定律方面所做出的那些伟大发现——就其所达到的程度而言——只是有可能成为科学革命顶峰的宇宙动力学的发现的初级阶段,这一结论对这位曾在科学史上享有如此高的声望的人来讲,并不是什么不光彩的事情。
似利略做出了大量发现,不过,他的革命活动主要在以下这四个独特的领域著称于世,即望远镜天文学,运动原理和运动规律,数学与经验的关系的模式,以及实验科学或实验法科学。(有人可能会十分恰当地举出一些例子来说明,伽利略在另一个领域也很著名,这第五个领域就是科学哲学,然而,伽利略在这方面颇具革命特征的思想,都包含在实验科学和数学与经验的关系方面了。〕
许多证据都可以证明伽利略在运动学领域进行了富有革命性的工作。而且,17世纪中叶那些物理学著作的编、撰者们——克里斯蒂安·惠更斯,约翰·沃利斯,罗伯特·胡克,伊萨克·牛顿——都承认并使用了伽利略的那些定律和原理。至少在两个世纪中,许多科学史家和科学哲学家都在为伽利略革命而欢呼。此外,长期以来,物理学家和其他领域的科学家们一直认为伽利略是位革命英雄,甚至夸大他的作用,以致于把他说成是现代科学和科学方法或实验方法的创始人,是牛顿前两个运动定律的发现者。简而言之,伽利略似乎轻而易举地通过了鉴别是否已经引起的一场科学革命的所有检验。
伽利略首次公开展示他的富有革命性的科学是在161O年,当时,他发表了用望远镜探索天空所取得的最初一部分成果。在本书第1章中我曾谈到过伽利略对天空的看法的转变过程,即从个人的观察经验到得出理智的结论的转变过程。他用类推原理和物理光学说明,月球表面也像地球一样,峭壁林立,起伏不平。他发现,地球使月球生辉发亮。他看到木星系统有四个卫星,金星有位相变化。他的望远镜不仅展示了有关太阳、地球以及行星这些以前已为人知的天体的一些新的消息,而且在可视的范围内向人们展现出了用肉眼从未看到过的大量的恒星(和卫星)。
伽利略的发现,以及其他人的发现,首次向所有人说明了天空是什么样。金星的位相,如果与行星的表现尺寸联系起来,就能证明金星轨道所环绕的是太阳而不是地球,并由此证明托勒密是错的。所有这些发现都是与哥白尼的这一命题相一致的:地球只不过是另一个行星;也就是说,所有的发现表明,地球更像是个行星而不像是与行星不同的东西。伽利略因此立即证明,他业已说明了哥白尼体系的正确性(尽管事实是,他的发现与第谷·布拉赫的体系也是十分相容的,而在第谷·布拉赫的体系中,地球仍被看作是位于中心,其他行星环绕着太阳,太阳则围绕着地球循环运动)。
这些发现使观测天文学发生了革命性转变,并且从根本上使哥白尼天文学讨论的层次发生了变化。在1610年以前,哥白尼体系可能看起来是一种思想实验,一种假设的计算系统,对那些否认地球看上去像是一颗行星(即我们认为是闪耀着极为灿烂的光芒的星球)的人来讲,它是某种在哲学上荒诞不经的东西。在1610年革命发生并产生了成果后,科学家能够(并且确实)证明,地球与其他行星实在相似,而且理应有同样的运动。哥白尼非常正确地指出,地球只不过是“另一颗行星”。要想否认这种新的在经验上得到了修正的哥白尼学说,只有拒绝用望远镜去观察,或者断言,通过望远镜所看到的肯定是一种光学假象或是望远镜的透镜所产生的一种畸变,而不是行星的真面目。一些非常明智的哲学家都采取了这一态度,这一事实表明,在当时,以经验证据为基础来认识大自然是一种多么激进多么富有创新性之举。
伽利略在其中引起革命性变化的第二个领域就是运动学。这一课题一直被认为是自然哲学的中心;所以,在其《两种新科学》(1638)第三天对话的开场白中,伽利略夸耀说,他正在引进“一门有关一个极为古老课题的崭新的学科”(伽利略1674,147)。也许,许多有关运动的新定律和新原理都应归功于伽利略。他发现了摆的等时性——当一个自由摆动的摆沿弧线运动所经过的弧的长度越来越短时,它的运动速度也会减慢,但它完成每次摆动的全程所需要的时间却(总是)保持不变。他通过激动人心的实验证明,在空气中,重量不同的物体下降的速度几乎是相同的,而并不(像以前亚里士多德以及今天未受过物理学教育的大部分人仍然认为的那样提与物体的重量成比例的。他发现,自由降落是匀加速运动的一种情况,在这种情况下,运动速度随着时间的持续而增加,运动的距离与时间的平方成正比。他提出了矢量速度的独立性原理,并采用了矢量速度组合(合成)法,他运用这一原理来解决抛射体的轨道问题:他发现,这种运动的路线是一条抛物线。因此,他指出,当大炮的炮简与地平线成45。倾角时,大炮的射程最远。
在对抛射体的抛物路线所作的分析中,伽利略勾画出了惯性运动原理形成初期的情况。一系列相继得到了改造的概念导致了牛顿1687年的惯性定律,显然,其中第一个概念就是伽利略提出来的。不过必须要记住的是,伽利略主要是从运动学角度来分析运动的。也就是说,尽管伽利略的讨论有一些或包含着一些力的作用问题,但他既没有尝试去找出引起(或导致)运动的力,也不曾试图去发现作用力与运动之间严格的数学关系。
伽利略的第三个贡献是在数学领域。现代科学,尤其是物理学,其特征就是用数学来表述其最高原理和定律。到了17世纪,科学的这一特征开始显示出了重要意义,而且,这种特征的重要性在牛顿的《自然哲学的数学原理》(即《原理》)出版时到达了第一个高峰。从伽利略在《两种新科学》第三天对“自然加速运动”的讨论里,我们可以看到伽利略方法论具有革命性的一面。伽利略在提出这一话题时解释说,假设任何一种运动并从数学上说明其本质,这种做法(就像以前经常做的那样)是完全合理的。不过,他愿遵循另一种方针,亦即“找出并阐明与大自然所进行的那种运动[加速运动烬可能完全一致的定义。”在考虑“在某一高度静止不同的”石头是怎样下落之后,他得出结论说,“新增值的速度”的连续获得,是由“最简单和最明显的规律导致的”(伽利略1974,153-154),这就是说,这种增值总是以同样的比率持续进行的。因此,(a)在下落的每一连续相等的特定距离内,或(b)在所消逝的每一连续相等的时间间隔内,速度的增加肯定总是相等的。伽利略出于逻辑上的理由对等距规则不予考虑,转而着手阐述等时规则的各种数学推论,其中有这样一个结论:在匀加速运动中,“物体在任何时间内所通过的距离都与各自所用的时间成倍比”(也就是说,它们各自都与那些时间的平方成正比)。伽利略随后对“这是否就是大自然在她的下落的物体上施加的加速作用”提出了疑问。
答案是通过一项实验找到的,这一实验程序“在把数学证明应用于物理学推论的那些学科中是非常有用和非常必要的”(伽利略1974,169)。实验也许看起来是相当容易的,但实验设计和对实验结果的解释,需要对现代科学的基本原理有高水平的理解(参见下文)。要正确地评价伽利略程序具有何等的革命性和创新性,我们应当把它与中世纪的数学家一哲学家们的活动加以比较和对照。在12、13和14世纪,数学家一哲学家们一直在积极探讨运动问题(参见第5章},他们的数学发展处于一种抽象的水平。在这里,运动问题属于一般的范畴,这一范畴包含了从“潜在性”到“实在件”(亚里土多德的定义)的任何一种可以量化的变化,这里的“潜在性”和“实在性”包罗万象,从爱、仁慈到(从一处向另一处的)地点的变化。所以,伽利略要根据(并举例说明)自然界中实际出现的运动来阐述有关运动的数学定律,这的确是一个大胆的举动。以前同样也没有人发展到用实验检验来证明物理学定律——而这里正是伽利略为科学做出重要贡献的第四个领域。
伽利略在数学上阐述了诸多运动定律,其中包括匀速运动定律,匀加速运动定律,以及抛物运动定律等等。这例证了17世纪科学的一个(可以毫不过分地说)普遍特征,亦即这一思想:基本的自然规律必须是用数学阐明的。在17世纪中,对数学的这种强调有着多种多样的形式。例如,从最初级的水平上讲,数学也许仅仅意味着数量的确定,计数作用。也许存在着这样的柏拉图教条:宇宙中的真理将借助数学而不是借助观察和实验来发现,首先应该考虑的是数学方面的特性,而不是与经验世界的一致。我们已经看到,在相当一段人类的历史中,人们感到圆是一种完美的体现,天体运动最应表现出这种完美的特点。咖利略驳斥了所有此类抽象的几何属性观,他认为,也许有些不同的几何特征最能说明某些特殊情况。当然,从数学上阐述科学是对科学的最高级的表述这种观点,在17世纪并不是十分新鲜的东西;托勒密曾把他的伟大的天文学杰作取名为《数学的综合》或《综合》。对伽利略而言,这些传统的数学观与新科学的数学观之间的差异意味着,在经验世界与知识的数学形式之间将会有一种和谐,这种和谐可以通过实验和批评性观察来获得。
不过,在伽利略撰写的数学著作中,他所阐述的并不是通常我们所想到的那种数学,亦即代数方程的应用,混合比例(例如“距离与时间的平方成比例”),流数,或微积分等。他所论述的是数列。以下规则即为其中一例:若取自由落体在第一段时间间隔末的速度值作为速度单位,则它在相继且相等的时间间隔末的速度为从一开始的自然数(或整数),或者说它在相继且相等的时间间隔内所走过的路程彼此的比为奇数,或曰,在这一系列时间间隔末所走过的总距离按平方律变化。在《试金者》中(伽利略1957,237-238),伽利略对自然界的数学问题作了精彩的陈述,他指出,应该把几何学看作像有关数的法则一样重要。“哲学[自然科学,或科学]写在宇宙——这部一直向我们敞开的伟大著作中”;但是,“我们如果不先学会书里所用的语言、掌握书里的符号,就不能了解它。这部书是用数学语言写出的,它的字母是三角形、圆和别的几何图形。不借助它们,那就一个字也读不懂。”所以,谈到伽利略与数学的关系时,重要的并不在于数学本身的水平有什么创新之处,而在于他清晰而引人注目地表述了用数学来阐述自然现象的必要性,以及以实验和观察为基础确立自然界的数学规律的必要性。
谈到伽利略与科学实验方法论的关系,有必要谨慎一些。近年来有一项值得注意的事业(主要集中在小约翰·赫尔曼·兰德尔的著作中),这就是对伽利略科学方法论的先驱者进行探讨。我发现,很多的历史学家都犯了一个根本性的错误,即没有分清有关方法的那些抽象的陈述或格言与实际的科学工作之间的区别。在许多16世纪的作者的著作中,确实有听起来像是讨论实验或从事科学研究的方式的论述,然而,了解到这些作者中没有一个人曾完成过任何一项科学研究工作这一事实,我们就不太相信它们真是有关实验问题的阐述了。附带说一句,在拉丁语和罗曼语中,用来表达实验、经验的词都是相同的,而且大体上每个人都知道。
据说,伽利略曾在一个高塔上抛下重量不等的物体这一著名的实验,解决了一个独特的问题。所谓伽利略在众目睽睽的情况下在比萨斜塔上进行演示,公开与亚里士多德学说对抗之说,不过是些过于耸人听闻的虚构之词,无疑,它们都是杜撰出来的。不过,伽利略确实在自己的笔记本中记录过他“从一个高塔上”把重物抛下来的情况。伽利略这样做是为了了解:传统的“常识”观是否正确,重物在空气中自由下落时的速度是否与它们各自的重量成比例。伽利略用另一种实验来检验他的假说——自由下落的物体的运动是匀加速的。我们要问的是:自由落体的速度的增值是否与消逝的时间成正比呢?我们会看见,在进行一项人们会在其中提出这类有关大自然的问题的实验中,将会产生出许多问题。要直接检验这种比率是不可能的。所以,伽利略检验了另一个定律,一个他希望检验的逻辑推论,这就是:距离与时间的平方成正比。即使这一检验也超出了伽利略的能力所为,因为自由下落的物体运动得太快,以致于他难以进行测量。因此,正像他所说的那样,他“冲淡重力”,在一个斜面上进行了实验。他在实验中发现,时间平方律确实经受住了实验的检验。当然,伽利略是位伟大的实验家,他充分认识到,进行大量不同角度的斜面实验是很重要的;在所有这些斜面实验中,定律都经受住了检验。我不想详细地讨论伽利略是怎样根据斜面角度的增大用数学来表述重力沿斜面的分量的。只要说明以下这一点就足已了:伽利略在所选择的例子中表明,随着思想的发展和“科学”的日益复杂,必须要设计出一个实验用来检验那些哪怕看起来最简单的定律如:距离与时间的平方成正比。
伽利略不仅认识到对运动所作的抽象的数学推理一般均可适用于自然界中所观察到的真实的运动,并且通晓用实验来检验数学规则的技术,他也熟知怎样说明思想状态与实验状态的差距。例如,他通过实验发现,从一个高塔上下落的重的物体比轻的物体略微早一点接触地面;他把这个微小的差额归因于空气阻力以及重的物体和轻的物体克服这种阻碍作用的相对能力。他提出结论说,在理想状态下,在真空中或自由空间内,它们下落的情况是完全相同的。
在进行实验设计以便对假说加以检验的同时,伽利略还对自然现象作了实验探讨。斯蒂尔曼·德雷克对伽利略的手稿进行了仔细研究后,重现了这类探讨实验。这类实验很有可能就是伽利略解决惯性问题的关键,而且,它们几乎已经使伽利略以一种与他在《两种新科学》中所描述的方法略有不同的方式得出了匀加速运动定律。
伽利略的确不是第一位进行实验的科学家,但他是头等重要的科学家之一,他在进行数学分析的同时,使实验成了他的科学的一个组成部分。事实上,他把实验技术与数学分析相结合(例如在斜面实验中所做的那样),使他名符其实地成了科学的探究方法的奠基人。
伽利略大量的实验和天文学观察包含了他的科学的哲学中两个革命的特征(与斯蒂尔曼·德雷克的通信为我澄清了这个问题)。一个是,伽利略所表明的信念:“感性经验和必要的证明”“不仅优于哲学信条而且优于神学信条。”很有可能,直到19世纪,“大多数科学家才采取了与他相同的立场。”第二个特征与伽利略的探讨工作有关(德雷克称,伽利略的探讨是“他的科学中主要的富有创新性的部分,而且,伽利略在许多地方都提到过这种探讨”),这就是“在裁决任何科学问题时权威不足为据。”在《水中的物体》中,伽利略更进一步评论说:“阿基米德的权威并不比亚里士多德的权威更加重要;阿基米德之所以正确,是因为他的结论与实验相符。”德雷克怀疑“除了他那些自身就可以说明问题的发现外,伽利略对其科学中任何新颖的问题都要考虑。”我们可以同意德雷克的看法,即伽利略仅仅“把他自己看作是把托勒密很成功地运用于天文学上的方法用在了物理学上;也就是,在不考虑古老的[亚里士多德的]意义上的因果条件或[借助于〕形而上学原则的情况下,用几何学方法和算术方法把辛勤测量的结果运用在可检验的预见之上。”
伽利略的成果广为人知,人们也都因此承认,他使运动学得到了改革和更新。沃尔特·查尔顿1654年出版了《自然科学》一书,该书主要涉及的是新老原子论的自然哲学,而且,它以介绍伽利略、伽桑狄以及笛卡尔等人在运动学方面的成就而闻名。查尔顿在这部书中毫不怀疑地认为,伽利略的研究是全新的研究。他认为“伟大的伽利略”“奠定了运动本质的…基础”,正是这一成就导致了“亚里士多德的有关学说”的“覆灭”(p.435)。他认识到了,“没有一位古人的探讨”深入到“物体向下运动”时速度增加的“比率或速率”,而伽利略却发现了这个问题,此外,正是这位“伟大的伽利略”完成了“对大自然最鲜为人知的奥秘的探讨,这种探讨是无与伦比的”(35,455)。
在17世纪的科学文献中,伽利略似乎不仅是运动定律的发现者和亚里土多德的驳斥者,而且还是最早用望远镜观察天空的探索者。约瑟夫·格兰维尔在其论文《现代实用知识的改进》中(1676,18-19),用了整整一页的篇幅来论述伽利略用望远镜所做出的发现:
在[第谷·布拉赫]以后随继而来的时代,亦即我们这个时代,他的发现和他的前辈人著名的哥白尼的那些发现得到了非常好的应用;而且,天文学在人们心目中获得了有史以来最为崇高、最为完美的地位。如果愿意的话,可以用一部书的篇幅来描写所有独特的发现,但我不想这样做,我只想简要地谈一下。我打算先谈谈伽利略,这位享有盛名的望远镜的创造者,尽管首先发明这种绝妙的望远镜的荣誉应归于阿姆斯特丹的雅各布斯·梅齐乌斯,但改进了它的却是著名的伽利略,而且是他首先把望远镜应用于对星空的观测;凭借得天独厚的优势,他发现了银河的本质,发现了猎户星座上端由21颗新星组成的星云,和由36颗新星在巨蟹座**同构成的另一处星云,他还发现了土星的光环,木星的卫星,他把它们的运动汇编成了一个星历表。根据这些新月状的东西就可以确定木星到地球的距离,以及到子午圈的距离,这将是一件很有意义的事,因为这总可以通过一年一次或两次的月食来测量;其实,根据这些新的行星的星蚀进行计算的机会是常有的,这一年反复出现了480次。此外,(望远镜还促使)伽利略发现了奇怪的土星位相,它有时是椭圆形的,有时是圆形的;金星也像月球一样有时增大,有时缩小;他还发现了太阳的黑点,以及它围绕自己的中轴的自转;还发现了由其不同位置的黑点集合而成的月球的天平动;以及其他一些令人惊讶的、具有实用价值的奇妙的现象,它们是古人从未见到过的。
也许可以把这段会令读者窒息的说明与格兰维尔对开普勒一带而过的叙述加以对照:
下一个要谈的是开普勒,他首先提出了椭圆假说,并对火星的运动进行了极为准确的和富有启发性的观察;他还用最为清晰和明确的方式撰写出了哥白尼天文学的概要,书中含有其他一些人的发现,也有他本人的几项著名的发现;书中没有提到星历表,也没有提到有关营星的著作。格兰维尔甚至没有提及开普勒的面积定律或和谐定律,而已显然对开普勒以行星运动的物理学原因为基础建立新的天文学纲领并不重视。
牛顿在《原理》中指出,伽利略之所以名扬天下,不仅是因为三项运动定律中的头两项定律,而且还是因为这头两项定律的推论,它们涉及到了向量速度的组合问题及其解决办法。’所以,牛顿为伽利略欢呼,说伽利略是他自己的理论力学最初的奠基者,同时却贬低了开普勒的作用:说他只是行星运动的第三定律或和谐定律的发现者,彗星的观察者。他甚至怀疑开普勒是否发现了椭圆轨道定律和面积定律。(有关牛顿和开普勒的讨论,参见科恩1975)17世纪的天文学无疑就是伽利略天文学。伽利略倡导使用望远镜,从而使天文学的观察基础发生了革命,并使他以现代科学奠基者之一的身份赢得了主导地位。他对自由下落问题的研究。他对抛射体运动和沿斜面向下的运动的分析,业已成为与实验相结合的数学分析的典范。他所发现的有关匀速运动和匀加速运动的定律依然是这门科学的基础。实验方法,尤其是那些每次可能只改变一个参量的实验方法,仍旧以他的名字命名。伽利略比开普勒(他没有伽利略那种用实验获取知识的惊人才能)和吉伯(他缺少伽利略的那种数学知识)更胜一筹,他的研究体现了科学的新的特点,这些特点则是科学革命的表征。伽利略是现代科学最伟大的奠基者之一,他是科学革命中的一位英雄人物。
然而,伽利略革命并没有完成。在其运动问题的研究中,伽利略把他的注意力主要集中在我们今天会称之为运动学的那部分。他已经开始思考地球运动中力的作用,但他所取得的最重要的进展并不是在这方面。与开普勒不同,伽利略本人完全没有注意到,宇宙中的作用力、地球的作用力或太阳的作用力,有可能是行星运动现象的原因。他无视开普勒行星运动定律的发现,而且嘲弄开普勒的这一见解:月球远距离的作用力有可能是导致海洋中潮汐运动的原因。在科学中,伽利略革命的完成还需要有另一个阶段的革命,那就是对惯性、对加速度产生的地球的和天体的作用力的认识,伽利略本人在这些问题方面的思考尚处于萌芽阶段。牛顿革命使伽利略已经完成的工作中的潜力得以实现,而且取得了远远不仅如此的成就。当然,在此之前还需要有半个世纪的发展时期。说伽利略科学革命的完成还需要有一场更为深入的革命,而伽利略在运动原理和运动定律方面所做出的那些伟大发现——就其所达到的程度而言——只是有可能成为科学革命顶峰的宇宙动力学的发现的初级阶段,这一结论对这位曾在科学史上享有如此高的声望的人来讲,并不是什么不光彩的事情。