您的位置:漫步小说网 > 其他书籍 > 科学中的革命-美-科恩章节目录 > 第三部分 17世纪的科学革命 第7章 哥白尼革命

第三部分 17世纪的科学革命 第7章 哥白尼革命(2/2)

科学中的革命-美-科恩作者:科学中的革命-美-科恩 2017-04-13 11:59
家J.B.德朗布尔依然认为,这篇关于假说的声明是哥白尼本人写的。

    在考虑天文学中(而非圆周运动的宇宙学或哲学中)可能发生过的哥白尼革命时,我们必须把哥白尼计算地球运动(或太阳的表现运动)、行星运动和月球运动的系统与托勒密的系统进行比较和对照。哥白尼的方法是否为天文学家提供了更为准确的结果呢?欧文·金格里奇用计算机查明了16世纪这些行星实际所处的位置,并把这些结果与16世纪托勒密星表的制作者所得出的结果进行了比较。他发现,火星黄经的误差为5。。但是他指出:“正如开普勒在其《鲁道夫星表》中所抱怨的那样,1625年哥白尼的火星误差已经接近了5。”(金格里奇1975,86)。简而言之,哥白尼的结果在数值方面并不比(假定要用它们去取而代之的)托勒密的结果更为完善。如果哥白尼采用伯恩哈德·瓦尔特的而不是他本人的观察结果(参见R.克雷默1981),他也许会大大降低这些误差。

    哥白尼本人以为他的行星天文学能准确到什么程度呢?据雷蒂库斯记录(《新星表》…MDLl,p.6;参见安格斯·阿米塔奇1957,153),哥白尼曾经说过,如果他的行星理论能与所观察到的行星的位置相符合(亦即,精确到10弧分以内),他本人也会像毕达哥拉斯当年发现那条著名的以其名字命名的定理时一样兴奋不已。然而事实上,哥白尼从来没有达到这样准确的程度。要想了解这一准确值的大小,也许有必要指出,观察者的肉眼平均只能分辨出两两一对相距4弧分的恒星。按照纽格鲍尔的观点(1968,90),在16世纪末第谷·布拉赫以前,精确到IO弧分人们就会认为观察与理论完全相符了。没过多久,10弧分便被人们认为太不精确了,一个理论如果与第谷·布拉赫所确定的火星的观测位置之间有接近这个值的差额,那就可以认定该理论是没有价值的而且应当抛弃。对开普勒来说,在第谷对行星所做的观察中,哪怕是8弧分的误差也是难以想象的。第谷所确定的一些基本星的位置,一般与它们真正的位置相差不到1弧分(A.贝里1898,142),而且可以设想,除了几个例外的情况外,他所确定的行星的位置的误差还没有超过1弧分或2弧分的。在《新天文学》中(1609),继承了第谷·布拉赫观察的开普勒写道(贝里译本1898,184):

    既然神明出于仁慈赐予我们第谷·布拉赫这样一位最为细心的观测者,而他的观测结果揭示出…计算有8弧分的误差,所以我们理应怀着感激的。心情去认识和应用上帝的这份恩赐…因为如果我认为这8弧分的经度可以忽略不计,那么我就应当完全纠正第十六章所提出的…假说。然而,由于这些误差不能忽略不计,所以,仅仅这8弧分就已经表明了天文学彻底改革的道路;这8部分已经成为本书大部分内容的基本材料。

    那些认为天文学中曾有过哥白尼革命的史学家们,喜欢引拉兹马斯·莱因霍尔德的(《普鲁土星表》或《普鲁士人星表》)为证,这部书的书名是为了纪念两个“普鲁士人”:哥白尼及莱因霍尔德的赞助人普鲁士公爵奥尔布雷克特。这部书出版于1551年,即《天体运行论》出版仅八年之后,它被公认是属于哥白尼体系的一部著作,尽管星表精确到孤秒“而哥白尼只精确到孤分”(德雷尔1906,345),但该书的总体安排还是遵循《天体运行论》的模式进行的。这些星表获得了真正的成功,无疑这“提高了哥白尼的名望”(金格里奇1975a,366),不过,他那使“行星参数有些小的改动以便使它们更加准确无误地与哥白尼所记录的观测结果相吻合”的方法,却系“徒劳无益之举,因为哥白尼所确定的行星的位置存在着一些错误”(p.366)。德雷尔(1906,345)得出结论说,由于“新近的观测极为贫乏,”莱因霍尔德的星表“并不比它们所取代的那些星表好到哪里…而且,在第谷和开普勒的工作取得成果之前,也不可能有什么更佳的进展。”

    有一点(欧文·金格里奇提醒我注意到了这一点提至关重要的,这就是,在16世纪末,事实上尚未有人按照哥白尼的。小本轮体系计算过行星的位置(在哥白尼的这一体系中,小本轮或小圆的中心在本轮上,而本轮的中。动则在均轮或参考圆上)。他们只是借用哥白尼的《天体运行论》中或莱因霍尔德的《普鲁土星表》中所列出的星表的内容。此外,哥白尼所用的是终端位置而不是平均位置,因而,从来就不存在是否应增加或减去某个修正值这种模糊不定的问题,而这种问题却是古老的(以平均位置为基础的)星表的一个特点,这是一个严重的疑难问题,而且是误差的根源所在。这样看来,《天体运行论》中的星表对计算天文学有过实实在在的(而且是有益的)影响,尽管哥白尼的太阳不动说的天文学的基本特征并没有产生这样的影响。然而人们认为,构成哥白尼革命的恰恰是哥白尼天文学的那组概念以及它的宇宙体系,而不是他计算出的星表。

    虽然哥白尼体系没有带来更准确的结果,但人们常常认为这一体系“比托勒密系统更简明、更精致”(S.F.梅森1953,102),而且,“根据哥白尼体系来进行无文学计算更容易了,因为在计算中所需的圆的数目少多了。”有一部副标题为《现代天文学之父》的哥白尼传记,此书大概会使我们相信,“通过确立地球绕轴自转并且在一轨道上公转,哥白尼把托勒密认为进行假设必不可少的圆周运动的数额减少了一大半”(阿米塔奇1957,159)。有关这一问题的许多说明,都表现出了罗伯特·帕耳特(1970,114)所说的“80-34集合”,这一信条至少可以追溯到阿瑟·贝里1898年的《天文学简史》,按照此书的观点,哥白尼宇宙只需34个圆,而托勒密或其信徒则需80个圆。事实上,很难准确地说明每个体系究竟需要多少个圆;圆的数目取决于计算模式和体系的发展状态。找们业已看到,哥白尼在他的《短论》的结尾部分曾说过,他只需要34个圆,然而德国的天文学史专家厄恩斯特·津纳(1943,186)则说,哥白尼实际需要38个圆。阿瑟·凯斯特勒(1959,572-573)计算出《天体运行论》中所需用的圆的数目为48个。纽格鲍尔(1975,926)指出,托勒密所需的圆的数目为43个—比《天体运行论》中所需的数目少5个。欧文·金格里奇发现,“哥白尼体系与古典的托勒密体系的比较”有可能“更为精确,只要我们把圆的计数限制在(太阳)、月球以及行星的经度结构中即可:这样,哥白尼需要18个圆,托勒密需要15个。”因此他得出结论说,“哥白尼体系比原来的托勒密体系还要复杂一点”(金格里奇1975,87)。

    显而易见,在简化天文学体系方面未曾有过哥白尼革命。无论如何,确定这两个天文学体系哪个更为简明的,并非仅仅是所需圆的总量。不管哥白尼实际上大概需要过(或假定他需要过)多少个圆,事实是,只需草草翻一下《天体运行论》(三种英译本中的任何一个版本,亲笔所书的手稿的两个摹本中的任何一个,最初的任何一个印刷本或手抄本,或较晚的任何一个拉丁文本),就可以得出这样一个印象:哥白尼连篇累牍地使用本轮。即使一位新手也能看得出,《天体运行论》与《天文学大成》中的图解,在几何学方法和构图方面有着某种亲缘关系,这一点与任何朴素的、认为哥白尼的著作无论从哪种显而易见的意义上讲都比托勒密的著作更富有现代性、更为简明的观点是不相符的。

    对于已被公认的托勒密体系的某些特色,哥白尼有能力作出解释(或者说,能够解释得过去)。例如,为了解释为什么从远离太阳的地方从来没有看到过金星,托勒密曾假定,金星本轮的中心总是位于从地球到太阳的一条直线上(参见图7)。水星也有同样的特点,尽管它的某些情况更为复杂。不过,哥白尼对同一现象只是用这一简单的事实加以说明:金星和水星环绕太阳的轨道小于地球环绕太阳的轨道。对于其轨道在地球轨道之外的三个行星或外行星,托勒密理论中含有这样一个前提:这三个行星中每一个的本轮的半径,总是与地球上的观测者到(平)太阳的一条直线相平行的。在哥白尼的解释中,这两条直线仿佛是收敛的,或者——换一种说法——“本轮指向行星的半径方向与地球到太阳这一直线方向的永远平行,已不再是得不到解释的巧合了,它是地球在轨道上进行环绕太阳的公转这一物理现象的一种显示”(罗森1971a,408)。

    常常有人说,与托勒密体系相比,哥白尼体系的一个主要的特点就是这种对行星运动的“自然的”解释。在托勒密体系中,太阳围绕地球运动,它只不过是另一个行星或“游荡的星星”,对于水星、金星、火星以及木星和土星等的运动为什么表现出一些与太阳有关的特点,该体系并未作出解释。据说,当这一体系的参照中心从地球转向太阳时,这种奇怪的现象就变得合情合理或者说可以理解了。不过,就此而论必须注意,在哥白尼体系中,同样的五个行星的运动特点是与地球相关的,尽管对哥白尼来说,地球像它们一样也是一个行星(参见纽格鲍尔1968,102-103)。

    哥白尼对他自己的月球运动理论非常自豪。托勒密对月球运动的解释不仅违背了匀速运动原则。而且对于月球的位置,只有在极大地夸张月球距离的变差的条件下,这种解释的准确性才能达到可以容忍的程度,尽管月球的表现尺寸与视差并没有什么相应的变化。在《天体运行论》中,哥白尼(罗森1971,72)毫不含糊地批评了托勒密的月球理论,因为它预言说:“当月球处在上弦情况下并且位于本轮的最下方时,它…将新月和满月时看上去几乎大四倍。”同样,“在上弦和下弦时,月球的视差也应大大增加。”然而,哥白尼断定,任何一位进行细心观测的人“都将会发现,就这两方面而言,上弦月和下弦月的差别是微不足道的。”在《天体运行论》第4册第3章中,哥白尼充分地阐述了他自己的月球理论,该理论长期以来一直被认为可能是这一论著中最有独创性的部分;该理论运用了第二个本轮,即小本轮,它是其中心位于本轮之上的一个小圆。设想月球是在小本轮上运行,这样就排除了非匀速运动以及明显错误的、人们并未观察到的所谓表现尺寸的巨大变化。近年来已有学者指出,早在此理论大约一个半世纪以前,大马士革的天文学家伊本·阿沙特就阐述过这类月球理论(参见E.S.肯尼迪、V.罗伯茨、F.阿布德以及W.哈特内等人的系列论文),但是我们没有任何证据可以说明哥白尼是怎样受到他的穆斯林前辈的影响的。(参见哥白尼1978,pp.358,385;De rev,bk.3,ch.4)

    《天体运行论》与托勒密的《天文学大成》是密切相关的,它并没有真正构成什么人们可以察觉到的、焕然一新的离经叛道行为,此外,事实上,在这两部书中,就像在中世纪的阿尔-巴塔尼的《天文学》中那样,“章与章之间、定理与定理之间、星表与星表之间”(纽格鲍尔,1957,Zbo)都有着一种对应的关系。只是到了开普勒时代(在第谷·布拉赫时代也是如此),“这种传统的魔力才被破除”;我们可以同意纽格鲍尔的这一观点:“在开普勒论火星的著作《新天文学》出版以前,没有哪部天文学著作的标题像它那样意味深长。”

    J.L.E.德雷尔通常总是赞美哥白尼的成就,但他也不得不得出这样的结论:哥白尼的著作有“一个严重的缺陷”(1909,342)。不仅哥白尼本人几乎没有进行过什么实际的观测,而且,由于“对新的观测无所需求”,他的著作因此受损。更确切地讲,这一缺陷的产生部分是由于哥白尼“过分相信了托勒密所进行的观测的准确性”,部分是由于“哥白尼在许多方面寸步不离他的伟大前辈。”开普勒显然是第一位作出这样批评的天文学家,在他的《新天文学》中,他批评了哥白尼试图“更多地去解释托勒密而不是去解释自然。”几乎所有的评论者都指出,哥白尼和托勒密使用的是同样的资料。纽格鲍尔(1957,202-206)曾把“托勒密的水星运动的模型与哥白尼理论”加以对比,他得出这样的结论,即“除了哥白尼坚持用圆周表示每一部分的运动而托勒密则已更为自由地进行探讨以外,这两种模型就在像投影中显示出的那样,几乎没有什么差别。

    是否曾有过哥白尼革命?

    那么,对于所谓与哥白尼及其《天体运行论》有关的革命,我们能得出什么结论呢?无论就实用天文学还是计算天文学而言,哥白尼所进行的改革很难说是革命性的,在某些方面甚至可以说是倒退。不过,在提倡用实在论哲学取代流行的工具主义方面(参见补充材料7.1),哥白尼或许可以说是富有革命精神的。我们已经看到,有人声称,所需圆周数目的锐减意味着更进一步的简明性,但是经过严格的考察证明,这类主张是错误的。推广匀速圆周运动是哥白尼体系的一个特点,从某种特定的物理学观点或哲学观点考虑,匀速圆周运动的推广比托勒密的等分点更能令人满意,然而这并没有证明天文观测是件轻而易举的事。开普勒放弃了这种推广。在成功地以本轮轨道为基础构造一个新的天文学体系时,开普勒首先恢复了托勒密的等分点结构。

    在16世纪下半叶,人们就地球运动问题对哥白尼体系曾有过一番争论(关于这一点,请参见J.E.L.德雷尔、T.S.库恩、多罗西·斯廷森以及恩斯特·律纳等人的著作)。我认为,这一点也是很有意义的,即莱因霍尔德制作《普鲁土星表》,是16世纪行星天文学的发展依赖哥白尼的唯一重要的例子。就这些星表而言,是哥白尼提供了观测、模型、计算方式以及原始推导和数据,而莱因霍尔德不过是再加工了一下。然而,这些星表的制作——正如我们看到的那样——“并没有为莱因霍尔德提供机会,以表明其信仰,而且他也没有暗示,哥白尼体系在物理学方面是否是正确的”(德雷尔1906,346)。简而言之,尽管有人使用了哥白尼的星表以及他的某些计算方法,但1543—1600年的天文学文献并未表明有什么革命的迹象。按照第3章所提出的检验来看,我们必定会得出这样的结论:如果曾有过哥白尼革命,那么这场革命是发生在17世纪而不是16世纪,而且它是一场与开普勒、伽利略、笛卡尔以及牛顿等人的伟名联系在一起的革命。这些科学家们所进行的改革使天文学体系发生了如此大的变化,以致于它已经不再是严格意义上的哥白尼体系了,尽管开普勒出于对哥白尼的尊敬把他的一部巨著取名为《哥白尼天文学概要》,但这部书是对他自己的革新所作的终极陈述。17世纪许多论述科学问题的作者并不怎么重视哥白尼(参见补充材料7.2),这也暗示了,在天文学中不曾发生过哥白尼革命。

    从严格的天文学观点而不是宇宙学(形而上学)观点出发,我们这个时代的早期天文学研究领域中的杰出学者0.纽格鲍尔(1968,103)就会得出这样的结论:

    现代史学家充分利用事后认识的有利条件,他们强调日心体系和它所导致的简明性的革命意义。事实上,行星位置的计算完全遵循的是古代的模式,而且所得出的结果也是同样的。哥白尼的太阳理论肯定是与实际的计算、与根本的投影式观念背道而驰的。对月球理论而言,应该有第二个本轮并以此代替等分点——我们现在知道,这是些与伊斯兰天文学的某一学派相似的方法——这种投影式的美妙想法,并不能使人们更容易地想象行星现象。若不是第谷·布拉赫和开普勒,哥白尼体系只会有助于使托勒密体系以更复杂但能令哲学家满意的形式永久存在下去。

    按照纽格鲍尔的观点(1957),哥白尼为天文学作出了三项重要贡献。他澄清了从观测到确定参照值的各个步骤,这是方法论上的一项重要改进。他富有洞察力,发现无需附加的和任意的假定而凭借简单的计算便可得知行星与太阳的距离。另外,他那所有行星的轨道有一个统一的中心的假设,为行星纬度的问题找到了答案。

    考虑一下例如1600年的情况,或许除了第谷·布拉赫正在进行的革命外,那时的天文学中大概没有什么可以觉察得到的革命。当时,第谷·布拉赫正在用他的新方法对天文学进行全面的改造。这些新的方法包括:使用设计巧妙、制造精良的天文仪器〔规模很大,并备有“小水平板”系统(a system of“pinnules”),以便能指示出细微的弧的标度的确切的读数〕,使用新的大气折射表、新的观测体系,以及——也许最重要的是——从事这样一种新的,实践,即夜复一夜地在某个行星可见的全部时间内对它进行连续的观测。第谷的那些革新像伽利略用望远镜对月球表面所做的观测一样,其本身并没有在科学中构成一场革命,但它们确确实实地为将会逐渐导致牛顿革命的新的开普勒天文学提供了新的和准确的数据。

    1616年,哥白尼的学说因其革命的内容而名扬天下,当时,《天体运行论》被列入了《**索引》之中;类似地,伽利略的《关于两大世界体系的对话》在1633年也被禁止出版了。不过,据说《天体运行论》只是“donec corrigatur”(在修改前)被禁止,而伽利略的《对话》却被无条件地列入了《索引》之中;而且,大概直到19世纪,情况始终如此。在1600年的索引中,《天体运行论》被列入了圣徒会众命令修改的图书的目录之中,此书的非革命的性质和特点由此昭然若揭。几乎要求进行的所有修改,都不过是把对实在的陈述或确定的陈述改为对种种前提条件或假说的陈述。例如,第1册第11章的标题《地球三相运动的证明》被一笔改为《论地球三项运动假说及其证明》。

    以牛顿的《原理》(1687)为顶峰的17世纪物理学所取得的伟大进展,并非起源于哥白尼那一个圆套一个圆的复杂体系,而是起源于新的开普勒体系(该体系以太阳为中心,而且每一行星的轨道都是一种统一的简单的曲线即椭圆曲线),起源于显然决非哥白尼主义者的伽利略和笛卡尔等人的物理学思想。正如我们将在第8章中看到的那样,开普勒体系差不多在每一基本原理上都与哥白尼相矛盾。在17世纪的大半个世纪中以及以后的时间里,每当科学家讨论哥白尼体系时,他们几乎总是在指开普勒体系。德雷尔(1909,344)曾直率而大胆地指出:“哥白尼并没有创造出当今人们所说的‘哥白尼体系。”’如果说天文学中有过一场革命的话,那么,这是一场开普勒和牛顿的革命,而决不是什么不折不扣或确凿无疑的哥白尼革命。