您的位置:漫步小说网 > 其他书籍 > 科学发现的逻辑-英-卡尔.波普尔章节目录 > 第六章 可检验度

第六章 可检验度(2/2)

科学发现的逻辑-英-卡尔.波普尔作者:科学发现的逻辑-英-卡尔.波普尔 2017-04-13 11:29
,以至在计算可观察事件之间的细微差别,由于在我们的测量中可达到的精确度不够高而不能检测到。因此,不首先改进我们的测量技术,就不可能用实验在这两个理论中作出判定。这表明,现行的测量技术决定了一定的域——一个范围,在这个范围内观察其间的差别为理论所允许。

    因此,理论应该有可达到的最高可检验度(因此只允许最窄的域),这一规则衍推这样的要求:测量的精确度应尽可能提高。

    人们经常说,所有测量都在于确定点的重合。但是任何这种确定只能在某些限度内才是正确的。在严格的意义上,不存在点的重合。两个物理“点”——比如,在量杆上的一个标记,在被测量物体上的另一个标记——它们至多能做到靠得很近;但不能重合,即不能合并成一点。不管在其他场合这个说法是如何的平凡,它对测量的精确性来说是重要的。因为它使我们想到,测量应该用下列术语来描述。我们发现,被测量的物体的点落在量杆的两个级别或标记之间,或者比方说,我们的测量仪器的指针落在刻度的两级之间。然后我们可以或者把这些级别或标记看作我们误差的两个最佳界限,或者去估计(比方说)指针在刻度间隔内的位置,因而得到一个比较准确的结果。人们可以这样描述这后一情况:我们使指针落在两个想象中的分级标记之间。因此,一个间隔、一个域总是存留着。物理学家的习惯是每一次测量都要估计这个间隔。(因此,例如他们效法Milliken用静电单位测量电子的基本电荷,得出e=4.774·10-10,加上:不精确范围是±O.005·10-10。)但是这里发生一个问题。人们用两个标记——即间隔的两个边界——来代替刻度上的一个标记的目的究竟是什么,对于这两个边界的每一个,又一定会提出同样的问题:对于这间隔的边界,什么是准确性的界限呢?

    给出间隔的边界显然是无用的,除非这两个边界本身能以大大超过我们对原来的测量所希望达到的精确度确定下来;即在它们不精确的间隔内确定下来,这些间隔因此应该比它们为原来的测量值确定的间隔小几个数量级。换句话说,间隔的边界不是截然分明的,而实际上是很小的间隔,这个间隔的边界本身仍然是更小得多的间隔,等等。就这样我们达到了可以称为间隔的“不分明的边界”或“缩聚边界”的观念。

    这些考虑并不以误差的数学理论和概率论为前提。这走的是另一条迂迴的路;通过分析测量间隔的观念,这些考虑提供了一个背景,如果没有这个背景,误差的统计理论就没有什么意义。如果我们测量一个量许多次,我们得到的数值以不同的密度分布在某一间隔——精确性的间隔依赖现行的测量技术。仅当我们知道我们追求什么——即这个间隙的缩聚边界——我们才能把误差理论应用到这些数值上,并确定间隔的边界。

    现在我想所有这些多少说明了使用测量方法对于纯定性方法的优越性。即使在定性估计的情况下,例如对一个乐音的音高的估计,有时也可能为这种估计给出一个准确性的间隔,这是正确的;但是,没有测量,任何这样的间隔只能是很模糊的,因为在这种情况下,不能应用缩聚边界的概念。这个概念只能在我们可以谈到数量级的地方因而只能在规定了测量方法的地方才适用。我将在第68节中,联系到概率论,进一步运用精确性间隔的缩聚边界这一概念。

    38.联系维来比较可检验度

    直到现在为止,我们仅在理论可以借助子类关系来作比较的范围内来比较它们的可检验度。在某些情况下,这个方法在指导我们选择理论方面很成功。因此现在我们可以说,在第20节中举例说到的Pauli的不相容原理的确证明是一个令人满意的辅助假说。因为它极大地增加了旧的量子论的精确度,因而增加了可检验度(如新量子论的相应的陈述断言:电子具有反对称状态,而不带电粒子和某些带大量电荷的粒子具有对称状态)。

    然而,对于很多目的来说,用于类关系的方法来进行比较是不够的。因此,例如Frank指出,具有高水平的普遍性的陈述——例如Planck公式里的能量守恒原理——易于变成重言的,失去它们的经验内容,除非初始条件可以“……用少数测量,……即依靠系统状态特有的很少几个量值”来确定。关于必须确定和代入公式的参量的数目的问题是不能借助子类关系的帮助来阐明的,尽管它是显然与可检验性和可证伪性以及它们的程度密切联系着的。确定初始条件需要的量值越少,足以使理论被证伪的基础陈述就越不是复合的;因为起证伪作用的基础陈述,是由初始条件和推导出的预见的否定二者的合取组成的(参看第28节)。因此,通过弄清一个基础陈述必须有的最小复合度(如果它能够与理论矛盾的话),就有可能比较理论的可检验度;只要我们能找到一种方法来比较基础陈述以弄清它们是否更(或不那么)复合的,即是否是大量(或小量)比较简单的一种基础陈述的复合物。所有复合度没有达到必要的最低限度的基础陈述,不管它们内容如何,只是由于它们的低复合度,就都是为理论所允许的。

    但是,任何这样的纲领都面临着困难。因为一般地说,单靠检查,是不容易说出一个陈述是否是复合的,即是否等于更简单的陈述的合取。在所有的陈述里,都出现普遍名称,通过分析它们,人们往往能把陈述分解为合取的组分(例如,陈述:“在k地有一玻璃杯水”也许可以被分析和分解成两个陈述:“在k地有一玻璃杯盛着一种液体”和“在k地有水”)。用这种方法来分解陈述,没有希望找到任何自然的终点,特别是因为,我们为了使进一步分解成为可能,总能引进新的已定义的普遍名称。

    为了使得所有基础陈述的复合度成为可比的,可以建议:我们必须选择一定的陈述类作为基本的或原子的陈述,然后通过合取和其他的逻辑运算就能够从这些基本或原子陈述中得到所有其他陈述。如果成功,我们就应用这种方法来定义复合的“绝对零度”,然后可以把任何陈述的复合表示为可以说是绝对复合——度。但是由于上面已经说过的理由,这样一种程序必须被认为是非常不适当的;因为它会给科学语言的自由使用施加苛刻的限制。

    然而,比较基础陈述的复合度,因而也比较其他陈述的复合度,仍然是可能的。可以这样做:任意选择一个相对的原子陈述类,我们把它作为进行比较的基础。这样一种相对原子陈述类可以用生成的图式或母式来定义(例如,“在……地方为了……有一个量器,它的指针指在刻度……和……之间”)。然后,我们可以把通过代入确定值,从这种母式(或者陈述函项)中得到的所有陈述类定义为相对原子的,因而定义为等复合的。这些陈述类,与所有可从这些陈述形成的合取一起,可以称之为一个“场”。一个场的n个不同的相对原子陈述的合取,可以称之为“这场的n组复合”,并且我们可以说,它的复合度等于数n。

    如果对一个理论t,存在这样一个单称(但是不一定是基础)陈述场:对某个数目d,理论t不能为这场的任何d组复合所证伪,虽然它能为某些d+1组复合所证伪,那么我们称d为理论对于那个场的特性数。因此,这场的复合度低于d或等于d的所有陈述是同这理论相容的,是为这理论所允许的,不管这些陈述的内容是什么。

    现在就有可能把对理论的可检验度的比较建立在这个特性数d的基础之上。但是为了避免在使用不同的场时可能造成的不一贯,有必要使用一个比场这一概念更窄的概念,就是应用场的概念,如果已知理论t,我们说一个场是这理论t的一个应用场,假如对于这个场,存在理论t的一个特征性数字d,而且假如它满足其他一些条件。

    一个理论t对于一个应用场的特性数d,我称之为t对于这个应用场的维。“维”这个词本身就说明了问题,因为我们可以把场的所有可能的n组复合看作有空间结构的(在无限维的构型空间中)。例如,若d=3,则那些可允许的陈述(因为它们的复合度太低)形成这个构型的一个三维的子空间。从d=3过渡到变为d=2,相应于从立体过渡到为平面。维数d越小,容许的陈述类(这些陈述由于它们的复合度低,不管内容如何,不能与这理论矛盾)受到的限制就越严格,这理论的可证伪度就越高。

    应用场的概念不限于基础陈述,但各种单称陈述都被容许作为属于一个应用场的陈述。但是通过借助场比较它们的维,我们能估计基础陈述的复合度(我们假定,与高度复合的单称陈述相应的是高度复合的基础陈述)。因此可以假定,与较高维的理论相应的是一个较高维的基础陈述类,这个类的所有陈述为这理论所容许,不管它们断言的是什么。

    这回答了两种比较可检验度的方法如何联系的问题——一种方法通过理论的维,另一种方法通过子类关系。有这样一些情况:这两种方法都不适用,或者只有其中一种方法适用。在这种情况下,在这两种方法之间当然没有发生冲突的余地。但是如果在一种特殊情况下,这两种方法都适用,那么可以想象会发生这种的事:两个理论有相同的维,但是,假如用建基于子类关系的方法来评价,可能有不同的可证伪度。在这种情况下,从后一种方法得出的判断应该被接受,因为这一种方法证明是比较灵敏的方法。在这两种方法都适用的所有其他情况下,它们一定会导致相同的结果;因为,借助维理论的一条简单定理可以表明:一个类的维一定大于或等于它的子类的维。

    39.曲线集的维

    有时我们可把我所说的一个理论的“应用场”很简单地等同于它的图形表示场,即图纸上的一块面积,我们在这张图纸上用图形表示理论:可认为这个图形表示场的每一点相应于一个相对原子陈述。因此理论相对于这个场的维,就等于相应于这理论的曲线集的维。我将用第36节中的两个陈述q和s来讨论这些关系(我们用维作比较适用于具有不同谓词的陈述)。假说q——所有行星轨道都是圆——是三维的:要证伪它,至少需要这场的四个单称陈述,相应于它的图形表示的四个点。假说s:所有行星轨道都是椭圆,是五维的,因为要证伪它,至少需要六个单称陈述,相应于图形上的六个点。我们在第36节里看到:

    q比s更易证伪:因为所有圆都是椭圆,所以有可能把比较建基于子类关系之上。但是使用维使我们能比较以前不能比较的理论。例如,我们现在可以比较一个圆假说和一个抛物线假说(它是四维的)。“圆”、“椭圆”,“抛物线”,每一个词表示一个曲线类或集;这些集中的每一个集有d个维,假如挑选出这集中的一条特定曲线,或者给以特征描述,d点是必要和充分的话。在代数表示式里,这曲线集的维依赖于参量的数目,这些参量的值我们可以自由选择。所以我们可以说,用以表示一个理论的一个曲线集的、可以自由测定的参量的数目,是那个理论的可证伪(或可检验)度的特性数。

    与我的例子中的陈述q和s相联系,我愿意对Kepler发现他的定律作一些方法论的评论。

    我并不想提出这样的看法:完美的信念——指导Kepler作出发现的助发现原理——是有意或无意地由对可证伪度的方法论考虑所引起的。但是,我的确认为,Kepler取得成功部分地由于这一事实:作为他出发点的圆假说,相对地说是易于证伪的。假如Kepler从由于其逻辑形式不是如圆假说那样易于检验的假说出发,考虑到计算的困难,这种计算的基础是“在空中”——可以说,漂浮在天空中,以不知道的方式在运动,他很可能得不到任何结果。Kepler通过证伪他的圆假说达到的毫不含糊的否定结果,事实上是他的第一个真正的成功。他的方法也被证明完全正确,因而他可以继续进行下去;特别是因为,即使这第一步尝试也已经产生一些近似值。

    无疑,Kepler定律可以用另外的方法找到。但是我想,这是引致成功的方法,这一点不仅是偶然的。这相当于消去法,仅当理论足够易于证伪——足够精确,能够和观察经验相冲突时,这种方法才是可应用的。

    40.两种减少曲线集维数的方法

    非常不同的曲线集可以有相同的维。例如,所有圆的集是三维的;但是所有通过一个给定点的圆的集是一个二维集(和直线集一样)。如果我们要求圆应该都通过两个给定点,则我们得一个一维集,如此等等。每一个添加的要求,即一个集的所有曲线必须通过多一个给定点,减少这个集的一个维。

    零维类

    一维类

    二维类

    三维类

    四维类

    直线

    圆

    抛物线

    通过一个给定点的直线

    通过一个给定点的圆

    通过一个给定点的抛物线

    通过一个给定点的圆锥曲线

    通过两个给定点的直线

    通过两个给定点的圆

    通过两个给定点的抛物线

    通过两个给定点的圆锥曲线

    通过三个给定点的圆

    通过三个给定点的抛物线

    通过三个给定点的圆锥曲线

    除增加给定点数的方法以外,还有其他方法也可以减少维数。例如,给定长短轴比的椭圆集是四维的(和抛物线集一样),已知偏心率数值的椭圆集也是这样。从椭圆过渡到圆,当然等于指定一个偏心率(0)或者一个特定的长短轴比(1)。

    因为我们对评价理论的可证伪度感兴趣,现在我们要问:这些减少维数的种种方法对于我们的目的来说是否是等价的,或者我们是否应该更仔细地考察它们的相对价值。一条曲线必须通过一定的单一点(或小区域),这样的规定常常是联接于或相应于某一单称陈述即一个初始条件的接受。另一方面,比方说从一个椭圆假说过渡到一个圆假说,显然相应于理论本身的维的减少。但是,如何区别清楚这两种减少维的方法?一种减少维的方法并不根据有关曲线的“形式”或“形状”的规定来进行;即例如通过指定一个或更多的点,或者通过某种等价的规定来减少维,我们可以给这种方法一个名称:“内容的减少”。在另一个方法里,曲线的形式或形状规定得更窄,例如,我们从椭圆到圆或从圆到直线等等,我称之为维数的“形式的减少”的方法。

    然而,要使得这个区别截然分明是不很容易的。这一点可以这样来看:减少理论的维用代数术语来说意味着以常数代替参数。现在,我们如何能区别不同的以常数代替参数的方法,是不大清楚的。从椭圆的一般方程过渡到圆的方程这种形式的减少,可以被描述为使一个参数等于0,使第二个参数等于1。但是,如果另一个参数(绝对项)等于0,那么这就意味着内容的减少,就是规定椭圆的一个点。但是,我想,如果我们看到它和普遍名称问题的联系,就有可能使得区别清楚起来。因为内容的减少引进一个个别名称到有关曲线集的定义中,而形式的减少则引进一个普遍的名称。

    让我们设想,也许根据“直指定义”,给予我们某一个别的平面。在这个平面上的所有椭圆集可以用椭圆的一般方程来定义;圆集可以用圆的一般方程来定义。这些定义不依赖于我们在这平面的什么地方画与它们有关的(Descartes)坐标;因此,它们不依赖于坐标的原点和方向的选择。特定的坐标系统只能由个别名称来决定;比方说由直接指定它的原点和方向来决定。由于椭圆(或圆)集的定义对于所有Descartes坐标是相同的,它不依赖于这些个别名称的规定:它对Euclid群的所有坐标变换(位移和相似变换)是不变的。

    另一方面,假如人们想定义共同的在平面上有着一个特殊个别点的椭圆(或圆)集,那么我们就必须运用一个方程,它对于Euclid群的变换不是不变的,而是和一个单称的,即个别地或直指地规定的坐标系统相联系的。因此,它是和个别名称相联系的。

    可以把这种变换安排在一个等级系统里。对于比较一般的变换群是不变的一个定义,对于比较特殊的变换群也是不变的。对于一个曲线集的每一个定义,有一个它特有的(最一般的)变换群。现在我们可以说:一个曲线集的定义D1与一个曲线集的定义D2“同样一般”(或比它更一般),假如D1和D2(或一个更一般的定义)对于同一个变换群都是不变的话。一个曲线集的维的减少现在可以被称为形式的,假如这个减少并不减弱定义的一般性;否则它可以被称为内容的。

    如果我们通过考虑它们的维来比较两个理论的可证伪度,显然我们必须在考虑它们的维的同时考虑它们的一般性,就是它们对于坐标变换的不变性。

    按照理论(如Kepler理论)事实上是否作出了关于世界的几何陈述,或理论是否只是在它可以用图形来表示的意义上是“几何的”——例如,表示压力依赖温度的图形,上述程序当然必定是不同的。对后一种理论,或相应的曲线集提出这样的要求:它的定义必须对于比方说坐标系统的旋转是不变的,这是不适当的;因为在这些情况下,不同的坐标可以表示完全不同的东西(一个是压力,另一个是温度)。

    这就是我对用以比较可证伪度的方法的阐述的结论。我相信这些方法能帮助我们阐明认识论问题,例如简单性问题,我们接着就要讨论这个问题。但是,我们将要看到,还有其他问题通过我们对可证伪度的考察而得到新的说明;特别是所谓“假说的概率”或验证的问题。

    追记(1972)

    这本书的比较重要的思想之一是关于理论的(经验的或信息的)内容的思想(我们称自然律为“律”不是没有道理的:“它们禁止越多,它们说得越多”。比较:上面第41页和第112页以后)。

    在前一章里我强调两点:(1)理论的内容或可检验性(或简单性:参看第七章)可以有度,因此可以说这度使得可证伪性概念相对化了(它的逻辑基础仍然是否定后件假言推理)。(2)科学的目的——知识的增长——可以是和我们的理论的内容的增长完全一致的。(参看我的论文:‘The

    Aim of Science’,载Ratio

    Ⅰ,1957

    PP.24-35,〔经过修改〕重载Contempo-rary Philosophy.ed R.Klibansky

    1969,PP.129-142;现又为我的书Objectiue Knowledge:An Euolutionary

    Approach的第5章,这书即将由Clarendon Press出版。)

    最近我进一步发展了这些思想;特别参看我的Conjec-tures,and

    Refutatinns第10章,1963年版和以后的版本。两个新观点是:(3)内容或可检验性概念联系到正在讨论的问题或问题集而进一步相对化(在1934年我已经把这些概念联系到应用场而相对化了)。(4)引进理论的真性内容和它对真理的近似或接近(“逼真性”)的概念。