第二章 论科学方法理论问题(2/2)
《科学发现的逻辑-英-卡尔.波普尔》作者:科学发现的逻辑-英-卡尔.波普尔 2017-04-13 11:29
为“科学”,什么人应被称为“科学家”这种问题总是一种约定或决定的事情时,我这种怀疑就增加了。
我想这样一类问题应该用不同的方式来对待。例如,我们可以考虑和比较两种不同的方法论规则的系统;一种运用归纳原理,一种不运用。然后,我们可以考察,这样一种原理一旦被引进了,是否能应用而不产生矛盾,是否对我们有帮助;我们是否真正需要它。就是这种探究使我舍弃了归纳原理,不是因为这样一种原理事实上在科学中从不被使用,而是因为我认为,它不是必需的;它对我们并没有帮助;甚至会产生矛盾。
因此,我摈弃自然主义观点。它是非批判性的。它的赞成者没有注意到:凡是他们认为自己已经发现一个事实的时候,他们只不过提出了一种约定。因此这种约定易于变成一种教条。对自然主义观点的这个批判,不仅适用于它的意义标准,而且也适用于它的科学观念并且因而适用于它的经验方法观念。
11.作为约定的方法论规则
在这里,方法论规则被当作约定。它们被描述为经验科学的游戏规则。它们不同于纯逻辑的规则,与奕棋规则相当相象,很少人会把奕棋规则当作纯逻辑的一部分;因为纯逻辑的规则支配着语言学公式的变形。对奕棋规则的研究结果也许可以称作“奕棋的逻辑”,不过不是纯而简单的“逻辑”。(同样,对科学游戏——即科学发现——的规则的研究结果,可以称作“科学发现的逻辑”。)
可以举两个简单的方法论规则为例。它们足以表明,把方法的研究和纯逻辑研究放在同一层次上是不适当的。
(1)科学的游戏原则上是没有终点的。有一天有人决定,科学陈述不再要求任何进一步的检验,可以认为这些陈述得到最终证实,他就退出这个游戏。
(2)一旦一个假说被提出、被检验、被证明它的品质,没有“正当理由”就不允许它退出。“正当理由”可以是,比如:这一假说为另一个更可检验性的假说所代替;或者对这一假说的某个推断的证伪(“更可检验的”这一概念以后要作更充分的分析)。
这两个例子表明方法论规则是什么样子的。很清楚,它们和通常称作“逻辑的”规则是很不同的。虽然逻辑也许可以建立判定一个陈述是否可检验的标准,但是它肯定不涉及是否有人尽力去检验这一陈述这个问题。
在第6节里,我曾试图用可证伪性的标准来定义经验科学,但是由于我不得不承认某些反对意见的正当性,我曾允诺对我的定义作一方法论的补充。正如可以用适合于奕棋的规则来对它下定义一样,也可以用经验科学的方法论规则来对它下定义。建立这些规则时,我们可以系统地进行。首先要规定一个最高规则,作为判定其他规则的一种规范,因而它是一种更高类型的规则。这一规则就是:科学程序的其他规则必须这样来设计,它们并不保护科学中的任何陈述不被证伪。
因此,方法论规则既与其他的方法论规则密切联系,又与我们的划界标准密切联系。但是,这种联系不是一种严格的演绎的或逻辑的联系。更确切地说,这是由于构建这些规则的目的是,在于保证我们的划界标准的可应用性;因此,它们的形成和为人们接受都是根据一个更高类型的实用规则来进行的。关于这点的一个例子已经在前面说到(参看规则1)。我们决定不提交任何进一步的检验的理论就不再是可证伪的了。正是在规则之间的这种系统的联系,才使得我们谈论方法的理论是恰当的。大家承认,这种理论的宣布,就如我们举的例子所表明的那样,绝大部分是一种相当明显的约定。方法论并不是什么深奥的真理。不过,方法论在许多情况下,可以帮助我们弄清逻辑境况,甚至解决某些迄今已证明不好对付的广泛的问题。比如,其中之一就是判定概率陈述何时应该接受或者拒斥的问题(参看第68节)。
人们经常怀疑,知识理论的各种问题相互之间是否有系统的关系,以及它们能否得到系统的处理。我在本书里希望表明这些怀疑是不合理的,这一点是相当重要的。我所以提出我的划界标准的惟一理由是,它是很有成效的,它可以帮助我们弄清和解释很多问题。Menger说:“定义是教条,只有认定义引出的结论才能给我们某些新的洞察力”这肯定也适用于“科学”概念的定义。正是从我的经验科学的定义的推断和根据这个定义得出的方法论决定,科学家才能看出我的定义和他对他的努力的目标的直觉观念是如何的一致。
哲学家也只有他们能接受从我的定义引出的推断时,才会接受我的定义。我们必须使哲学家感到满意:这些推断使得我们能够发现在过去知识理论中存在的矛盾和不恰当之处,以及追溯到这些矛盾和不恰当从之而来的基本假定和约定。我们也要使他们感到满意:我们的建议并不受到同类困难的威胁。这个发现和解决矛盾的方法也适用于科学本身,但是它在知识理论里有其特殊的重要性。正是依靠这种方法(假如依靠的话),方法论约定才可得到证明,并可证明它们的价值。
我担心,哲学家是否会把这些方法论的研究看作属于哲学,这是十分可疑的,但是实际上这并没有多大关系。不过在这方面值得提及的是,不少形而上学的因而肯定是哲学的学说可以被解释为方法论规则的典型的实体化。其中一个例子,即所谓“因果性原理”将在下一节讨论。另一个我们已经遇到的例子是客观性问题。因为科学客观性的要求也可以解释成一条方法论规则:只有那些可以主体间相互检验的陈述才可被引进科学中(参看第8、20、27节和其他地方)。的确可以这样说:理论哲学的大部分问题,而且是最有趣的问题,都能用这种方式被重新解释成为方法的问题。
我想这样一类问题应该用不同的方式来对待。例如,我们可以考虑和比较两种不同的方法论规则的系统;一种运用归纳原理,一种不运用。然后,我们可以考察,这样一种原理一旦被引进了,是否能应用而不产生矛盾,是否对我们有帮助;我们是否真正需要它。就是这种探究使我舍弃了归纳原理,不是因为这样一种原理事实上在科学中从不被使用,而是因为我认为,它不是必需的;它对我们并没有帮助;甚至会产生矛盾。
因此,我摈弃自然主义观点。它是非批判性的。它的赞成者没有注意到:凡是他们认为自己已经发现一个事实的时候,他们只不过提出了一种约定。因此这种约定易于变成一种教条。对自然主义观点的这个批判,不仅适用于它的意义标准,而且也适用于它的科学观念并且因而适用于它的经验方法观念。
11.作为约定的方法论规则
在这里,方法论规则被当作约定。它们被描述为经验科学的游戏规则。它们不同于纯逻辑的规则,与奕棋规则相当相象,很少人会把奕棋规则当作纯逻辑的一部分;因为纯逻辑的规则支配着语言学公式的变形。对奕棋规则的研究结果也许可以称作“奕棋的逻辑”,不过不是纯而简单的“逻辑”。(同样,对科学游戏——即科学发现——的规则的研究结果,可以称作“科学发现的逻辑”。)
可以举两个简单的方法论规则为例。它们足以表明,把方法的研究和纯逻辑研究放在同一层次上是不适当的。
(1)科学的游戏原则上是没有终点的。有一天有人决定,科学陈述不再要求任何进一步的检验,可以认为这些陈述得到最终证实,他就退出这个游戏。
(2)一旦一个假说被提出、被检验、被证明它的品质,没有“正当理由”就不允许它退出。“正当理由”可以是,比如:这一假说为另一个更可检验性的假说所代替;或者对这一假说的某个推断的证伪(“更可检验的”这一概念以后要作更充分的分析)。
这两个例子表明方法论规则是什么样子的。很清楚,它们和通常称作“逻辑的”规则是很不同的。虽然逻辑也许可以建立判定一个陈述是否可检验的标准,但是它肯定不涉及是否有人尽力去检验这一陈述这个问题。
在第6节里,我曾试图用可证伪性的标准来定义经验科学,但是由于我不得不承认某些反对意见的正当性,我曾允诺对我的定义作一方法论的补充。正如可以用适合于奕棋的规则来对它下定义一样,也可以用经验科学的方法论规则来对它下定义。建立这些规则时,我们可以系统地进行。首先要规定一个最高规则,作为判定其他规则的一种规范,因而它是一种更高类型的规则。这一规则就是:科学程序的其他规则必须这样来设计,它们并不保护科学中的任何陈述不被证伪。
因此,方法论规则既与其他的方法论规则密切联系,又与我们的划界标准密切联系。但是,这种联系不是一种严格的演绎的或逻辑的联系。更确切地说,这是由于构建这些规则的目的是,在于保证我们的划界标准的可应用性;因此,它们的形成和为人们接受都是根据一个更高类型的实用规则来进行的。关于这点的一个例子已经在前面说到(参看规则1)。我们决定不提交任何进一步的检验的理论就不再是可证伪的了。正是在规则之间的这种系统的联系,才使得我们谈论方法的理论是恰当的。大家承认,这种理论的宣布,就如我们举的例子所表明的那样,绝大部分是一种相当明显的约定。方法论并不是什么深奥的真理。不过,方法论在许多情况下,可以帮助我们弄清逻辑境况,甚至解决某些迄今已证明不好对付的广泛的问题。比如,其中之一就是判定概率陈述何时应该接受或者拒斥的问题(参看第68节)。
人们经常怀疑,知识理论的各种问题相互之间是否有系统的关系,以及它们能否得到系统的处理。我在本书里希望表明这些怀疑是不合理的,这一点是相当重要的。我所以提出我的划界标准的惟一理由是,它是很有成效的,它可以帮助我们弄清和解释很多问题。Menger说:“定义是教条,只有认定义引出的结论才能给我们某些新的洞察力”这肯定也适用于“科学”概念的定义。正是从我的经验科学的定义的推断和根据这个定义得出的方法论决定,科学家才能看出我的定义和他对他的努力的目标的直觉观念是如何的一致。
哲学家也只有他们能接受从我的定义引出的推断时,才会接受我的定义。我们必须使哲学家感到满意:这些推断使得我们能够发现在过去知识理论中存在的矛盾和不恰当之处,以及追溯到这些矛盾和不恰当从之而来的基本假定和约定。我们也要使他们感到满意:我们的建议并不受到同类困难的威胁。这个发现和解决矛盾的方法也适用于科学本身,但是它在知识理论里有其特殊的重要性。正是依靠这种方法(假如依靠的话),方法论约定才可得到证明,并可证明它们的价值。
我担心,哲学家是否会把这些方法论的研究看作属于哲学,这是十分可疑的,但是实际上这并没有多大关系。不过在这方面值得提及的是,不少形而上学的因而肯定是哲学的学说可以被解释为方法论规则的典型的实体化。其中一个例子,即所谓“因果性原理”将在下一节讨论。另一个我们已经遇到的例子是客观性问题。因为科学客观性的要求也可以解释成一条方法论规则:只有那些可以主体间相互检验的陈述才可被引进科学中(参看第8、20、27节和其他地方)。的确可以这样说:理论哲学的大部分问题,而且是最有趣的问题,都能用这种方式被重新解释成为方法的问题。